Forum |  HardWare.fr | News | Articles | PC | S'identifier | S'inscrire | Shop Recherche
1647 connectés 

  FORUM HardWare.fr
  Emploi & Etudes
  Aide aux devoirs

  help sur deux trucs que je ne coimprends vraiment pas (MPSI)

 


 Mot :   Pseudo :  
 
Bas de page
Auteur Sujet :

help sur deux trucs que je ne coimprends vraiment pas (MPSI)

n°516488
sundy13
Posté le 25-10-2005 à 20:34:46  profilanswer
 

Bonjour j'ai un gros probleme (meme deux) j'ai deux exos que j'ai commencés mais que je n'arrive pas à résoudre :!  
 
Soif F de R ds R / f(x,z) = f(x,y) + f(y,z)
Alors j'ai déja prouvé que f(x,x) = 0 et que f( y,x) = - f(x,y)/
 
Ils me demandent de poser fi (x)= f(x,0) et d'éxprimer f à l'aiode de fi , la peut etre ai je tort masi j'ai proposé: f(x,y) = fi(x) -f(y,0)....
 
ET la ou je bloque totalement est résoudre le probleme posé c'est à dire l'ensemble des fonctions f / f(x,z)=....
 
Si vous pouviez m'expliquer...
 
 
Pour le deuxieme exercice je comprends bcp moins bien ! On a trois cercles concentriques de centre 0 de rayon R1<R2>R3.  
On prend M1 Sur C1 de rayon r1, de meme pr M2 et M3 ....
Il faut mùontrer que si M1 M2 M3 est équilatéral alors R1 + R2<ou égal à R3.... il faut faire ca avec unerotation j'avoue que je suis pris de cours .....
JE suppose cette condition ... En posant A1 sur C1 je dois montrer qu'il existe deux trangles équilatéraux A1A2A3 et A1 A'2 A'3 tels que A 2 et A'2 sur C2 et A3 et A'3 sur C3 ...  
Je suppose que la encore c'est une histoire de rotation mais ne trouvant pas pr le 1 je ne trouve également pas pr le 2 ... je ne parle pas de la suite de lexo vu que je suis déja bloqué la dessus...
Pouriez vous m'aider SVP :(
Merci d'avance :bounce:  

mood
Publicité
Posté le 25-10-2005 à 20:34:46  profilanswer
 

n°516504
gloupin
Taupin un jour
Posté le 25-10-2005 à 21:23:06  profilanswer
 

j'ai pas bien compris ton énoncé pour le 2 (et puis j'aime pas la géomètrie)
 
exo 1 :
 
f(x,y)=f(x,z)+f(z,y)
Donc comme tu as dit f(x,x)=0
Et f(x,y)=-f(y,x)
 
je pose g(x)= f(x,0) tu as g(x) = f(x,z)+f(z,0)= f(x,z) + g(z)
donc f(x,z) = g(x) - g(z) = f(x,0) - f(z,0)
 
 
euh pour l'instant je buggue


Message édité par gloupin le 25-10-2005 à 22:44:00

---------------
Taupin un jour, Normalien toujours...
n°516548
uztop
Posté le 25-10-2005 à 22:32:18  profilanswer
 

gloupin, je crois que tu as mal copié l'énoncé de son exo :  
f(x,z) = f(x,y) + f(y,z)  et pas f(x,y)=f(x,z)+f(y,z)  
Du coup ton raisonnement ne marche plus : f n'est pas la fonction nulle
 

n°516559
gloupin
Taupin un jour
Posté le 25-10-2005 à 22:48:26  profilanswer
 

En débuggant je dirai
 
f(x,y) = ensemble des fonctions f(x,y) tel que f(x,y) = g(x)-g(y) avec g fonction quelconque...
 
comme ça f(x,y) = g(x) - g(y)= g(x) - g(z) + g(z) - g(y) = f(x,z) + f(z,y)
 
Bon après, tu as d'autres hypothèses ?


---------------
Taupin un jour, Normalien toujours...
n°516581
uztop
Posté le 25-10-2005 à 23:11:39  profilanswer
 

Je pense que g (fi) n'est pas vraiment quelconque :
f(x,-x) = g(x)-g(-x)
D'autre part f(x,-x) = f(x,0) + f(0,-x)
                           = f(x,0) - f(x,0) = 0
Donc g(x) = g(-x) : g est paire

n°516589
gloupin
Taupin un jour
Posté le 25-10-2005 à 23:24:09  profilanswer
 

non non !!!!
 
f(0,-x) = - f(-x,0) c'est tout !!


---------------
Taupin un jour, Normalien toujours...
n°516606
nazzzzdaq
Posté le 26-10-2005 à 00:23:51  profilanswer
 

un indice:
f(x,y)=f(x,0)-f(y,0)


Message édité par nazzzzdaq le 26-10-2005 à 00:24:12
n°516750
vieri32
Robert's siamese twin
Posté le 26-10-2005 à 14:20:03  profilanswer
 

U=RI  :o

n°517003
sundy13
Posté le 26-10-2005 à 19:31:31  profilanswer
 

j'ai pas trops compris ce que vous avez tous dit mis à part Nazzdaq avec son f(x,y) = fi(x) - fi(y).
Mais je ne vois absolument pas comment on trouve ainsi l'ensemble des  fonctions f... ( c coi le rapport U = RI????)
et vous avez aucune indée aussi pour l'exo de géométrie j'y comprends vraiment rien , enfin plutot je ne vois absolument pas comment le résoudre! Merci d'avance

n°517102
nazzzzdaq
Posté le 26-10-2005 à 21:44:43  profilanswer
 

C'est clair pourtant (mis à par le U=RI, qui n'est pas la bonne solution).
Soit F l'ensemble des fonctions f:RxR->R vérifiant f(x,z)=f(x,y)+f(y,z).
L'ensemble F est constitué par toutes les fonctions f s'écrivant
f(x,y) = g(x) - g(y) avec g décrivant l'ensemble des fonctions de R->R.


Message édité par nazzzzdaq le 26-10-2005 à 22:02:23
mood
Publicité
Posté le 26-10-2005 à 21:44:43  profilanswer
 

n°517120
sundy13
Posté le 26-10-2005 à 22:15:59  profilanswer
 

a ok lol donc ca c les solutions !!!! :) génial ... mdr :) merci beuacoup et par hasard qqun ne peut il pas me donner un coup de pouce pour l'exo de géo ? merci d'avance et merci a toi nazzzzdaq

n°517157
nazzzzdaq
Posté le 26-10-2005 à 23:11:53  profilanswer
 

Note complémentaire pour le 1 ier exo:
 je te conseille une rédation du type "raisonnement par condition necessaire et suffisante"
 
Soit f appartenant à F alors f(x,y)=f(x,0)-f(y,0) =g(x) - g(y) avec g R->R (condition necessaire)
 
Soit g R-> R et f(x,y) = g(x)-g(y), on vérifie f(x,z)=f(x,y)+f(y,z) (condition suffisante)

n°517187
sundy13
Posté le 27-10-2005 à 00:10:12  profilanswer
 

oui ca merci bcp de vouis inquieté pas ji avai pense :)  
cet exo la je l'avai bien avancé en fait j'étais bloqué sur le dernier point ... mais l'exo de géométrie je suis TOTALEMENT bloqué ... :(


Aller à :
Ajouter une réponse
  FORUM HardWare.fr
  Emploi & Etudes
  Aide aux devoirs

  help sur deux trucs que je ne coimprends vraiment pas (MPSI)

 

Sujets relatifs
help!pas le college du secteur!help philo!!!
math, MPSIProblème d'Electricité -> Help me please :)
exigence prépa mpsi au parc a lyonsujet de SI du concours polytechnique 2002 en MPSI
Need help pour demo en math , SVP !pbm math !! need help !!!!
Problème en maths lol help !VIE et JAPD...Please Help
Plus de sujets relatifs à : help sur deux trucs que je ne coimprends vraiment pas (MPSI)


Copyright © 1997-2022 Hardware.fr SARL (Signaler un contenu illicite / Données personnelles) / Groupe LDLC / Shop HFR