a = 0.999999999... Les points de suspension signifient que c'est une suite décimale illimités (infinité de chiffres après la virgule) périodique (représente donc un nombre rationnel) de période 9 (la période est la "tranche" de chiffres qui se répète indéfiniment, souvent on souligne la période).
Par exemple, le nombre rationnel 3/7 est représenté par une suite décimale illimitée (la division ne se termine jamais) périodique (quand on fait la division on retrouve une "tranche" de chiffres qui va se répéter indéfiniment : 428571)
3/7 = 0,428571428571428571...
Calcule la suite décimale illimitée représentant le nombre b=1/9, tu trouves 0,11111... donc a = 9*b donc a=9*1/9=1
Ce que tu as écrit est une autre démonstration de la même propriété qui se généralise à tous les nombres décimaux donc à tous les nombres entiers : toute suite décimale illimitée périodique de période 9 représente un nombre décimal
Réciproquement, tout nombre décimal est représenté par deux suites décimales illimitées périodiques, l'une de période 0 (ou 00, ou 000, etc, ce qui revient au même), l'autre de période 9 (ou 99, ou 999, etc )
6 = 6,0000... = 5,99999...
3,8 = 3,80000... = 3,79999...
78,623 = 78,6230000... = 78,62299999...
Et on démontre que toute suite décimale illimitée périodique représente un nombre rationnel
Exemples :
a = 5,732732732... Si on calcule b= 1/999, on trouve 0,001001001... donc 0,732732732... = 732*b = 732*1/999 = 732/999 qui peut être simplifié en 244/333
Comme a= 5 + 0,732732732... a = 5 + 244/333 = 1909/333 (quotient de deux entiers donc nombre rationnel par définition). Si tu fais la division avec ta calculatrice, tu retrouveras la suite décimale, mais, attention, comme ta calculatrice ne peut pas afficher une infinité de chiffres, elle va arrondir. Le dernier chiffre affiché sera peut-être différent : si elle coupe après le 7, le chiffre suivant étant un 3, en arrondissant elle affiche 7, si elle coupe après le 3, le chiffre suivant étant un 2, en arrondissant elle affiche 3 mais si elle coupe après le 2, le chiffre suivant étant un 7, en arrondissant elle affiche 3