Forum |  HardWare.fr | News | Articles | PC | S'identifier | S'inscrire | Shop Recherche
1658 connectés 

  FORUM HardWare.fr
  Emploi & Etudes
  Aide aux devoirs

  Calcul d'un volume "quelconque" , help svp

 


 Mot :   Pseudo :  
 
Bas de page
Auteur Sujet :

Calcul d'un volume "quelconque" , help svp

n°665546
miked
Avatar by Valrib Design™
Posté le 08-05-2006 à 18:59:34  profilanswer
 

Bonjour,
 
Voilà, je suis confronté à un petit problème. Je ne parviens pas à trouver une formule pour le calcul d'un volume.
 
Mon ex-boss m'avait aprit ceci (pour un calcul de déblais sur un terrain), mais maintenant que je dois l'appliquer, j'ai comme un affreux doute sur sa véracité.
 
Quelqu'un peut-il me confirmer si c'est une bonne approche ou pas ?
 
 
Voici le cas :  
 
http://users.skynet.be/fa074338/volume.jpg
 
Merci d'avance  :hello:

mood
Publicité
Posté le 08-05-2006 à 18:59:34  profilanswer
 

n°665672
double cli​c
Why so serious?
Posté le 08-05-2006 à 20:27:42  profilanswer
 

un bon point, c'est déjà valable dans le cas où aa' = bb' = cc' = dd' ce qui fait un rectangle :o mais même dans le cas général ça m'a l'air plausible cette histoire, étant donné que (aa' + bb' + cc' + dd')/4 ça doit bien représenter la hauteur moyenne du machin... par contre pour prouver que c'est exactement ça, je vois que du calcul d'intégrale un peu lourdingue :o


---------------
Tell me why all the clowns have gone.
n°665709
miked
Avatar by Valrib Design™
Posté le 08-05-2006 à 21:06:12  profilanswer
 

Salut Merci pour la réponse, c'est zuper important en fait, genre le client doit 1200 euros à l'entrepreneur où alors l'inverse.  
1200 euros dans la poche de l'un où l'autre selon que c'est faux ou vrai.
 
J'ai toujours utilisé ce calcul et on n'a jamais remis en question mes quantités, mais là, je voudrais pas me gourer c'est assez tendu comme situation  
 
:sweat:  
 
Encore merci, si un doctor ès géométrie passe par ici  :hello:  
 
 

n°665762
Cricrou92
Nous avons tous l'air normal..
Posté le 08-05-2006 à 21:43:23  profilanswer
 

ben oui elle est bonne ta formule, c'est juste la multiplication de la surface par la hauteur moyenne. No problem.

n°665784
miked
Avatar by Valrib Design™
Posté le 08-05-2006 à 21:56:32  profilanswer
 

Pinaise j'espère que tu dis vrai.  
 
Si oui, je vais en calmer un demain, high kick in da face   :sol:

n°665788
Cricrou92
Nous avons tous l'air normal..
Posté le 08-05-2006 à 21:58:56  profilanswer
 

May the force be with you :D

n°665798
double cli​c
Why so serious?
Posté le 08-05-2006 à 22:08:51  profilanswer
 

plus ça va plus le coup de la hauteur moyenne ça me paraît bon, mais pour le prouver définitivement déballons gentiment les intégrales :o
 
on considère l'axe AD comme axe des x, avec origine en A.  
la hauteur sur l'axe AD est donnée par (DD' - AA')*x/BC + AA'
la hauteur sur l'axe BC est donnée par (CC' - BB')*x/BC + BB'
on considère une tranche de largeur dx : son volume est AB*dx*[(DD' + CC' - AA' - BB')*x/BC + AA' + BB']/2
on intègre pour x allant de 0 à BC : AB*[(DD' + CC' - AA' - BB')*BC²/2BC + BC*(AA' + BB')]/2 = AB*BC*[DD'/2 + CC'/2 - AA'/2 - BB'/2 + AA' + BB']/2 = AB*BC*[AA' + BB' + CC' + DD']/4
 
ça marche :o c'est extrêmement boeuf de le faire comme ça, mais au moins ça le prouve une bonne fois pour toutes :o


---------------
Tell me why all the clowns have gone.
n°665827
Cricrou92
Nous avons tous l'air normal..
Posté le 08-05-2006 à 22:22:47  profilanswer
 

oula! Tu te compliques bien la vie dis moi. Enfin bon je suis d'accord avec toi. CQFD.

n°665835
double cli​c
Why so serious?
Posté le 08-05-2006 à 22:25:33  profilanswer
 

Cricrou92 a écrit :

oula! Tu te compliques bien la vie dis moi. Enfin bon je suis d'accord avec toi. CQFD.


bah c'était juste histoire de se convaincre que c'était bien ça, mais le coup de la hauteur moyenne ça devrait suffir quoi :o


---------------
Tell me why all the clowns have gone.
n°667337
magic_eric
Posté le 10-05-2006 à 12:31:35  profilanswer
 

J'ai pas fait le calcul ni lu la démonstration mais en gros, tu décomposes ton machin en parallélépipède et en pyramide et tu devrais t'en sortir car ressortir une formule toute faite c'est jamais bienvenu ;)


---------------
Et pendant ce temps chez Nvidia, AMD, ATI & .... : $$$$$$$$$$$$$$$$
mood
Publicité
Posté le 10-05-2006 à 12:31:35  profilanswer
 

n°668416
gipa
Posté le 11-05-2006 à 10:03:48  profilanswer
 

magic_eric a écrit :
"J'ai pas fait le calcul ni lu la démonstration mais en gros, tu décomposes ton machin en parallélépipède et en pyramide et tu devrais t'en sortir car ressortir une formule toute faite c'est jamais bienvenu".
 
Impossible, les parallélépipèdes et les pyramides ont des faces planes or il est évident que les segments [a'b'] et [d'c'] ne sont pas dans un même plan donc la face a'b'c'd' n'est pas plane.
 
Cependant, si on considère un deuxiéme volume a1b1c1d1a'1b'1c'1d'1 identique au premier et qu'on le pose à l'envers sur ce dernier, a'1 sur d', d'1 sur a', c'1 sur b' et b'1 sur c' les deux surfaces a'b'c'd' et d'1c'1b'1a'1 "collent" parfaitement et on obtient un parallélépipède de hauteur 700 donc de volume ab x bc x 700 est le double du volume initial.
La formule de miked dans son premier message donne le même résultat.

n°668454
magic_eric
Posté le 11-05-2006 à 11:01:20  profilanswer
 

La face a'b'cd' n'est pas plane mais d'apres le schéma on ne peut dire si elle est courbe ou bien si elle est consituée de 2 triangles plats (si tu vois ce que je veux dire).
Si elle est courbe, il suffit de trouver la fonction à 2 variables de la courbe et intégrer.  
S'il a que le schéma il pourra pas avoir une valeur précise du volume si la surface a'b'c'd' est courbe donc ca me ferait dire que la surface est pas courbe et qu'on peut donc décomposer le volume comme je l'expliquais.


---------------
Et pendant ce temps chez Nvidia, AMD, ATI & .... : $$$$$$$$$$$$$$$$
n°668533
gipa
Posté le 11-05-2006 à 12:17:41  profilanswer
 

Si a'b'c'd' était constituée de 2 triangles (forcément plats) il existerait une arête [a'c'] ou [b'd'] qui serait figurée.
Les segments [a'b'] et [c'd'] ayant la même longueur, le schéma m'a laissé supposer que la surface a'b'c'd' était engendrée par une droite glissant sur [a'b'] et [d'c'] (si tu vois ce que je veux dire) d'où mon raisonnement dans mon précédent post.
Mais c'est vrai que le schéma laisse la possibilité de surfaces concaves ou de surfaces convexes quelconques et dans ce cas, aucune possibilité de calculer le volume.

n°668549
magic_eric
Posté le 11-05-2006 à 12:33:14  profilanswer
 

Je pensais plutot a une arete b'd' d'apres le schéma...
Mais je pense que n'importe quel volume peut être découpé en parallélépipede et triedres s'il n'a que des surfaces plates ...


---------------
Et pendant ce temps chez Nvidia, AMD, ATI & .... : $$$$$$$$$$$$$$$$
n°668592
gipa
Posté le 11-05-2006 à 13:23:14  profilanswer
 

"Je pensais plutot a une arete b'd' d'apres le schéma..."  
Il n'y a pas d'arête b'd' sur le schéma.
 
"Mais je pense que n'importe quel volume peut être découpé en parallélépipede et triedres s'il n'a que des surfaces plates ..."
C'est vrai mais ce n'est pas le cas de ce volume, il n'a pas que des surfaces planes.

n°668595
magic_eric
Posté le 11-05-2006 à 13:25:59  profilanswer
 

En fait si. Il a juste pas dessiné l'arrete b'd'.


---------------
Et pendant ce temps chez Nvidia, AMD, ATI & .... : $$$$$$$$$$$$$$$$
n°668652
gipa
Posté le 11-05-2006 à 14:58:38  profilanswer
 

Et pourquoi n'aurait-il pas dessiné l'arête b'd' s'il y en a une ?
 
Demandons-le à miked.
 
Miked, il y aurait une arête b'd' et magic_eric vous accuse de ne pas l'avoir dessinée, pouvez-vous nous dire pourquoi ?

n°668673
magic_eric
Posté le 11-05-2006 à 15:26:57  profilanswer
 

je l'accuse pas je dis que c'est probable.


---------------
Et pendant ce temps chez Nvidia, AMD, ATI & .... : $$$$$$$$$$$$$$$$

Aller à :
Ajouter une réponse
  FORUM HardWare.fr
  Emploi & Etudes
  Aide aux devoirs

  Calcul d'un volume "quelconque" , help svp

 

Sujets relatifs
math 2nd helpHelp! ECE ,IECG ou prepa?
exercices calcul de sous-reseauxhelp
help cherche exemple de cas pratique (divorce,mariage)HELP! physique 2nd merci 2 maiD
calcul des indemnités de CPdissertation phedre help me!!
ecriture d'invention, help!Calcul d'un salaire brut?
Plus de sujets relatifs à : Calcul d'un volume "quelconque" , help svp


Copyright © 1997-2022 Hardware.fr SARL (Signaler un contenu illicite / Données personnelles) / Groupe LDLC / Shop HFR