Forum |  HardWare.fr | News | Articles | PC | S'identifier | S'inscrire | Shop Recherche
941 connectés 

  FORUM HardWare.fr
  Emploi & Etudes
  Etudes / Orientation

  Data analyst/ Data scientist / Management de l'innovation /...

 


 Mot :   Pseudo :  
 
Bas de page
Auteur Sujet :

Data analyst/ Data scientist / Management de l'innovation /...

n°4955190
Arithmetik
Posté le 23-01-2017 à 22:52:18  profilanswer
 

Bonsoir les forumeurs,
 
 
Je suis en licence d'économie gestion et j'ai quelques petites (ou grosses) questions à vous poser, en espérant avoir des réponses (des étudiants ou pros)!  
 
Premièrement c'est que je suis intéressé par le domaine du Big Data, et que l'analyse de données brut pour en sortir quelque chose d'exploitable est quelque chose qui me fascine.
Le problème est que apparemment le Data Analyst/Scientist (en regardant aussi sur le topic data science) c'est surtout de /chercher/créer des algorithmes à longueur de journée, et que c'est très axé sur le coté probabilité et des langages de programmation comme R (j'ai des bases en Java/Python), ce qui m’inquiète c'est que je vais juste "pisser du code" toute la journée et manipuler des formules, est ce une peur bien fondé? En plus on se retrouve avec un métier qui vu les Masters proposés, sont plutôt réservés de base aux ingénieurs, même si des ESC le proposent également mais top 5 (HEC et ESSEC), ou alors un Master en Statistique et Econométrie est t'il suffisant?  
 
La 2nd question porte sur les Master/IAE concernant le management de l'innovation. Peut on parler de traitement de données aussi dans l'innovation, comme un "sous data analyst" ou quelqu'un qui vient justement prendre les résultats du data analyst/scientist pour les étudier à son tour mais sur une autre échelle ? Je sais que je n'ai pas précisé les jobs, mais vu les débouchés ont l'air totalement diversifiés quand je lis une plaquette de présentation de Master... Est ce que ça encore une valeur aujourd'hui ?
 
Je n'arrive pas à savoir quels études entreprendre pour justement avoir le job qui me plait le plus sur le LT, et qui avec les progrès technologiques dans le monde du travail (robotisation, deep learning,...) soit encore viable dans les années à venir. Travailler ou étudier dans un autre pays que la France me gène pas, au contraire.  
 
Merci à vous ! Que vos journées soient longues et vos nuits plaisantes. :wahoo:  
 
 
 
 
 

mood
Publicité
Posté le 23-01-2017 à 22:52:18  profilanswer
 

n°4955734
KayFaraday
Posté le 25-01-2017 à 18:45:35  profilanswer
 

Data Scientist : Non seulement ingé mais en plus spécialité maths. Les connaissances en info suffisent pas. (Poussé en stats, connaissance théorique des algos, optimisation, etc). Donc c'est un peu mort en licence éco... Même en sortant de HEC/ESSEC, c'est pas vraiment des viviers à Data Scientist (plus Analyst).  
 
Management de l'Innovation ça reste flou, mais loin de data scientist. Vu ton profil, c'est plus cohérent.

n°4955798
Arithmetik
Posté le 25-01-2017 à 22:29:17  profilanswer
 

KayFaraday a écrit :

Data Scientist : Non seulement ingé mais en plus spécialité maths. Les connaissances en info suffisent pas. (Poussé en stats, connaissance théorique des algos, optimisation, etc). Donc c'est un peu mort en licence éco... Même en sortant de HEC/ESSEC, c'est pas vraiment des viviers à Data Scientist (plus Analyst).

 

Management de l'Innovation ça reste flou, mais loin de data scientist. Vu ton profil, c'est plus cohérent.

 

Merci de ta réponse, ce n'est pas rassurant.
Quand tu dis viviers, tu veux dire qu'ils ne bougent pas vraiment?

 

J'aimerais bien savoir ce que fait exactement quelqu'un qui as réussi son parcours en innovation, aprés un Master MTI à Paris Dauphine par exemple.

 

PS : Bon finalement il y'a une source que j'ai pas consulté et qui m'a bien aidé, les vidéos.


Message édité par Arithmetik le 26-01-2017 à 00:08:27
n°4955801
Rasthor
Posté le 25-01-2017 à 22:44:00  profilanswer
 

[:drapo]

n°4957856
Profil sup​primé
Posté le 02-02-2017 à 08:07:02  answer
 

KayFaraday a écrit :

Data Scientist : Non seulement ingé mais en plus spécialité maths. Les connaissances en info suffisent pas. (Poussé en stats, connaissance théorique des algos, optimisation, etc). Donc c'est un peu mort en licence éco... Même en sortant de HEC/ESSEC, c'est pas vraiment des viviers à Data Scientist (plus Analyst).  
 
Management de l'Innovation ça reste flou, mais loin de data scientist. Vu ton profil, c'est plus cohérent.


 
Ok merci :jap:  

n°4983880
cassiopell​a
Posté le 28-04-2017 à 19:56:15  profilanswer
 


Le topic date un peu, mais cela peut intéresser quelqu'un. En faite, c'est faisable. Je parle d'expérience.  :jap: (moi) Certes, c'est difficile et contre intuitive. Pour les français et les européens en L1-L3 (voir M1) je conseille tout simplement recommencer en Licence maths pures dans une université scientifique. Non, ce n'est pas une perte de temps!
 
Sinon les bons ingrédients pour passer de l'éco à data scientist:
1) Un bon background en maths
2) Une bonne fac avec plein de cours de maths en éco avec les options maths supplémentaires, et surtout avec les enseignants mathématiciens en maths. Donc cela ne concerne pas les petites universités, où le cours des maths sont assurés par les économistes. Certaines grandes universités sont peu matheux au niveau de programme, donc aussi - non. D'expérience il y a peu de maths en L1-L3 à Dauphine et TSE, et beaucoup à Nanterre et Cergy, peut-être Paris 1 Sorbonne.  
3) Les cours de maths doivent enseigner les maths, et non les recettes de cuisine et quel bouton appuyer (c'est le cas en éco à St Quentin en Yvelinne d'après un de mes anciens camarades de classe).  
4) Aller plus loin que le programme de math de la fac. Bon, c'est indispensable dans toutes les matières si on veux avoir TB comme moyenne.
5) Savoir programmer, même Pascale fera l'affaire (je plaisante... à moitié  :lol: ). Bon il faut programmer en Python.  
6) Choisir un bon master 2, bien évidement avec les cours recherche maths. Les gens d'éco s'orientent soit vers l'économétrie financière (trop trop trop de concurrence), soit en éco appliquée sans finance: économie d'énergie/environnement, économie des réseaux/numérique, théorie des jeux, etc.
7) Une thèse en math/maths appliquées/data science/theorie des jeux/recherche opérationnelle s'impose. + postdoc si la thèse n'était pas axés sur big data et apprentissage automatique, etc.
Et... être prêt d'aller bosser à l'étranger si les tu n'as pas réussi à créer un bon réseau et les RH sont trop borné pour accepter un non-ingé (grosses boites en général, dans les start-up c'est plus ouvert).  
 

KayFaraday a écrit :

Data Scientist : Non seulement ingé mais en plus spécialité maths. Les connaissances en info suffisent pas. (Poussé en stats, connaissance théorique des algos, optimisation, etc). Donc c'est un peu mort en licence éco...


Les ingés c'est plus data analyst (X, mines etc.), sauf si c'est ENSTA ou les masters spécifiques. Comme ils ne sont pas souvent formé pour faire les stats, ils galèrent énormément. Dans mon M2 presque tous les ingés (X, Mines, Agro, Superaero et autres) voyaient les tests d'hypothèses pour la premières fois et ne comprend pas pourquoi "régressions non-linaire" d'excel c'est un abus de langage et que ces régressions sont bien linéaires.    


Aller à :
Ajouter une réponse
  FORUM HardWare.fr
  Emploi & Etudes
  Etudes / Orientation

  Data analyst/ Data scientist / Management de l'innovation /...

 

Sujets relatifs
Feedback Dassault Data SystemsHelp maitrise d'ouvrage / business analyst / expressions de besoins
Consultant Change Management / Transformation Digitale (H/F)Asset Management Real Estate
Etudes Management / VenteMIAGE ou Management des SI ?
Aide pour orientation en Data Sciencerentrer en M2 "Accounting, Financial Management and Control" Boconi
Avis MS / MSc en Management du Sport - Kedge, Audencia, EM Lyon, TbsMaster Big Data
Plus de sujets relatifs à : Data analyst/ Data scientist / Management de l'innovation /...


Copyright © 1997-2022 Hardware.fr SARL (Signaler un contenu illicite / Données personnelles) / Groupe LDLC / Shop HFR