Forum |  HardWare.fr | News | Articles | PC | S'identifier | S'inscrire | Shop Recherche
862 connectés 

  FORUM HardWare.fr
  Emploi & Etudes
  Aide aux devoirs

  Problème d'optimisation de production

 


 Mot :   Pseudo :  
 
Bas de page
Auteur Sujet :

Problème d'optimisation de production

n°929422
darkeagle1​0
Je choisis l'option offensive
Posté le 06-01-2007 à 18:11:14  profilanswer
 

Bonjour/bonsoir tout le monde :)

 

Je suis en train de préparer des exercices avant mon exam de maths générales, et voici l'énoncé d'un exercice que je n'arrive pas à résoudre :

 
Citation :

Le volume de production q est donné, en fonction des quantités K de capital et L de travail, par q = K^0,4 x L^0,6  (où les "^" signifient exposant, x signifie fois).

 

On dispose d'un budget de 300 unités monétaires, une unité de travail coûte 6 u.m. et une unité de capital, 8 u.m.
Quelles quantités de capital et de travail vont maximiser le volume de production ?

 

Alors tout d'abord, voici ma méthode :
Vu que le budget est de 300 u.m., et que (c'est sous entendu) toutes les ressources sont utilisées, l'équation mettant en relation les deux variables (A pour le nombre d'unités de travail et B pour le nombre d'unités de capital) est la suivante :

 

300 = 6A + 8B, d'où A = 50 - 4B/3

 

Là où se pose déjà le problème, c'est lorsque j'injecte ceci dans la fonction q, car je ne suis pas tout à fait sûr de moi :heink:

 

q = K^0,4 x L^0,6   et quand on remplace ça donne : q = ((8B)^0,4) x ((50 - 4B/3)^0,6)

 

Je ne suis pas sûr de moi surtout pour la substitution du K ... en fait en mettant 8B ça ne veut pas dire grand chose il me semble ...

 

C'est chiant je suis dessus depuis déjà quelques heures, j'essaie de trouver la bonne logique pour résoudre l'équation, à cause de ces fichus exposants (même en les mettant sous forme de fraction comme 4/10 pour 0,4 ça ne m'avance pas à grand chose ...), mais si à la base mon équation est mauvaise ç'est pas gagné ...

 

Jusqu'à maintenant j'ai essayé d'abord à la bourin, mais quand j'ai vu qu'il me fallait développer un polynome exposant 6, j'ai laissé tombé, méthode bourrin pas bon  :o
Ensuite j'ai essayé avec la formule suivante (ici les "." représentent les "fois" )

 

Fonction de production q = C . (K^a) . (L^b)  donne ln(q) = ln(C) + a.ln(K) + b.ln(L)    si C,a,b,K,L > 0

 

Au début c'est emballant mais vers la fin c'est de nouveau le bordel, de plus je le répète je ne suis même pas sur et certain de ma base  :(
Je sais qu'il faut chercher les valeurs de A et B pour que la dérivée de q soit nulle (=maxima), mais je n'arrive pas à avoir une fonction dérivable ...

 

Merci pour d'avoir lu jusqu'ici, et d'avance un grand merci de votre aide  :hello:


Message édité par darkeagle10 le 06-01-2007 à 18:12:42

---------------
Gates gave you the windows. GNU gave us the whole house.
mood
Publicité
Posté le 06-01-2007 à 18:11:14  profilanswer
 

n°933838
pfuitt
Posté le 12-01-2007 à 11:03:37  profilanswer
 

je ne suis pas un specialiste de l'eco, mais pour moi tu as raison, il y a un souci.
tu as  300 = 6L+8K ==>L =(300-8K)/6=50-8K/6
tu injectes dans ta premiere relation : q = k^0.4x(50-8k/6)^0.6.
tu developpes tu reduis...puis du cherches le maximum de q(K) donc tu derives et tu étudies...

 

[edit] ortho :D


Message édité par pfuitt le 12-01-2007 à 11:22:43
n°934139
darkeagle1​0
Je choisis l'option offensive
Posté le 12-01-2007 à 19:20:05  profilanswer
 

Oui merci, en fait j'avais finalement réussi à le résoudre, comme tu as fait, en en parlant avec un pote, et on y est arrivé :)
 
Merci quand même c'est sympa ;)


---------------
Gates gave you the windows. GNU gave us the whole house.

Aller à :
Ajouter une réponse
  FORUM HardWare.fr
  Emploi & Etudes
  Aide aux devoirs

  Problème d'optimisation de production

 

Sujets relatifs
Gestion de production, Supply Chain ...problème de RAM et ROM...
[ économie ] problèmeprobleme en GEA
Etre en CDI pose-t-il problème ?Probleme d'orientation Apres BAc
Problème suiteProblème sur un TP conductimétrie
Problème de retard, employeur vs salariéProblème avec mon employeur pour démissionner .... :(
Plus de sujets relatifs à : Problème d'optimisation de production


Copyright © 1997-2022 Hardware.fr SARL (Signaler un contenu illicite / Données personnelles) / Groupe LDLC / Shop HFR